Inhaled sodium nitrite in pulmonary hypertension associated with heart failure with preserved ejection fraction

4th Annual Pulmonary Hypertension Drug Discovery and Development Symposium
July 10-11, 2017
Berlin, Germany

Marc A. Simon, MD, MS
Associate Professor of Medicine
Director, Heart Failure Research & PH Translational Research
Comprehensive Pulmonary Hypertension Program, Heart Failure & Transplantation Cardiology
Disclosure

- Research grant from Aires Pharmaceuticals, a wholly owned subsidiary of Savara Inc. (formerly Mast Therapeutics)
Nitric Oxide

\[\text{N}::\text{O} \]
Endothelium

Shear Stress

ACH

NOS

L-arginine → L-citrulline

NO

guanylyl cyclase (inactive) → guanylyl cyclase (active)

cGMP → GTP

Relaxation
Limitations for eNOS dependent NO signaling

- Endocrine activity limited by short half-life of NO in blood (Half life of < 2 milliseconds because NO scavenged by hemoglobin)
- Lack of intrinsic mechanism for hypoxic response (eNOS requires a molecule of oxygen to form NO)
- NO synthase is uncoupled and fails to generate NO with inflammatory and oxidant stress in disease
Nitrite salt: NaNO$_2$, KNO$_2$, HNO$_2$
Two parallel systems for NO generation in mammals
Nitrite therapeutics?
Nitrite Therapeutics

- Gastric mucosal protection
- Gastric host defense antibacterial effects
- Cerebral vasospasm
- Pulmonary hypertension
- Ischemia reperfusion:
 - heart
 - liver
 - solid organ transplantation
Nitrite therapeutics for PH (Group 1 and 2 disease)?
Clinical Development of Nitrite for PH

- One and 12-month rat and canine toxicology studies show only methemoglobinemia at very high doses
- Dose escalation phase IA studies complete in normal volunteers
- Safe dosing to 95 mg on background sildenafil in normal volunteers and five Group I PAH patients
- Phase I-II dose finding safety trial in 40 countries closed for data analysis
- Phase II catheterization study supported by NHLBI PO1 and MAST Therapeutics
Ongoing Phase II Acute Hemodynamic Study

- 43 enrolled (ClinicalTrials.gov NCT01431313)
 - 20 Group 1 (enrollment closed)
 - 17 Group 2 (of 20 planned)
 - 6 Group 3 (of 10 planned)

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPAP (mm Hg)</td>
<td>≥ 25</td>
<td>≥ 25</td>
<td>≥ 25</td>
</tr>
<tr>
<td>PCWP (mm Hg)</td>
<td>≤ 15</td>
<td>> 15</td>
<td>≤ 15</td>
</tr>
<tr>
<td>TPG (mm Hg)</td>
<td>−</td>
<td>> 12</td>
<td>−</td>
</tr>
<tr>
<td>PVR (Woods units)</td>
<td>−</td>
<td>−</td>
<td>≥ 3</td>
</tr>
</tbody>
</table>
Acute Hemodynamic Effects of Inhaled Nitrite in Pulmonary Hypertension due to Left Heart Disease (HFpEF)

- Baseline 1 Hemodynamics!
- iNO 40 ppm x 10 min!
- Baseline 2 Hemodynamics!
- iNO off x 10 min!
- Nitrite Dose 1 Inhaled (45 mg)!
- 15 min
- 30 min
- 45 min
- 60 min
- Hemodynamics Post-Dose 1
- Nitrite Dose 2 Inhaled (90mg)!
- 15 min
- 30 min
- 45 min
- 60 min
- Hemodynamics Post-Dose 2

PH-HFpEF

PH Group 1 (PAH)

<table>
<thead>
<tr>
<th>mPAP (mm Hg)</th>
<th>Cardiac Index (L/Min/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline 1</td>
<td>iNO</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Right Atrial Pressure (mm Hg)</th>
<th>PCWP (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline 1</td>
<td>iNO</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PVR (Woods units)</th>
<th>PA Compliance (mL/mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline 1</td>
<td>iNO</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>
PH Group 3 (Lung Dz)

Acute Hemodynamic Effects of Inhaled Nitrite in Pulmonary Hypertension due to Left Heart Disease (HFpEF)

Resistance-Compliance (RC) Curve

Inhaled Sodium nitrite improves exercise hemodynamics and ventricular performance in HFpEF

- Inhaled sodium nitrite (90mg) vs placebo (n=13 per group)
- Decrease PCWP, RA, mPAP at rest and with exercise
- Increase resting PA Compliance

Physiology of improved exercise capacity with nitrite in PH-HFpEF

- NO → Rest Venous Normoxia
- NO → Exercise Venous Hypoxia

- NO2 → RV Filling Pressures
- NO2 → LV Filling Pressures

- RV Filling Pressures → Exercise Capacity
- LV Filling Pressures → Exercise Capacity
- PA Pressures → Exercise Capacity

- PA Compliance

- Skeletal Muscle Metabolism*

Development of Nebulized Inhaled Nitrite

• Squeezable plastic ampule kit consisting of 80 mg/ml phosphate buffered Sodium Nitrite has been developed

• Nebulized 3-4 times a day with the Philips I-neb
 – Portable, rechargeable
 – Monitors compliance
Currently Enrolling Studies

INDIE-HFpEF

Inorganic Nitrite Delivery to Improve Exercise Capacity in HFpEF

Heart Failure Network (US)

- Multicenter Study, goal n=100, blinded placebo controlled, 4 week crossover
- ClinicalTrials.gov #NCT02742129
- HFpEF (clinical or RHC or BNP or echo evidence)
- Primary Endpoint: Peak VO$_2$ after 4 weeks treatment with inhaled nitrite
INABLE-HF: Inorganic Nitrite to Amplify the Benefits and toLerability of Exercise training
Barry A. Borlaug, MD
Mayo Clinic

- Single Center Study
- ClinicalTrials.gov #NCT02713126
- HFpEF (clinical or RHC or BNP or echo evidence) and HF is primary limit to activity
- **Primary Endpoint**: Peak VO_2 after 4 weeks treatment with inhaled nitrite
Conclusions

- Nitrite is potent hypoxic vasodilator at physiological concentrations.
- In studies to date, nitrite appears safe and tolerable.
- In PH-HFpEF, inhaled nitrite acutely lowers filling pressures, pulmonary pressures, mediated by a primary physiological effect of increasing pulmonary vascular compliance.
- Phase 2 studies are underway to assess the effects of chronic therapy on exercise capacity and/or hemodynamics.
Acknowledgment

University of Pittsburgh
Mark Gladwin
Charly Lai
Pamela White
Nikki Helbling
Nydia Chien
Tim Bachman
Rebecca Vanderpool
Medhi Nouraie
Masataka Sugahara
John Gorcsan

Aires Pharmaceuticals, Inc. (Savara Inc.)
Ed Parsley

Funding:
NIH RO1 HL125886
Mast Therapeutics